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Let W(x) =e 9% x & R, where Q(x) is even and continuous in B, Q" is
continuous in (0, =), and @' > 0 in (0, =), while for some A4, B > 1,

A< { ~d—(.rQ'(x))]/Q'(x) < B, x € (0,%).
dy

Let p,(W? x) denote the nth orthonormal polynomial for the weight W3(x),
X {W?) the kth zero of p,(W? x), and /,,(x) the fundamental polynomials.
Moreover let a, denote the nth Mhaskar—Rahmanov-Saff number for Q and let
a € (0,1). Then we show that the ath weighted Lebesgue function satisfies
uniformly for |x| < oa,,

WO L il W ()1 + 1xy, 1) "
k=1
~ (14 D)7+ Va2 WO+ IxD) “logn + (1+ k1))
sC{(1+ Ix1) “logn + (1 + I.xl)""},

where a > 0 and a := min{l, a}. We also modify this result to the whole real line.
;1994 Academic Press, Inc.

1. INTRODUCTION AND RESULTS

We consider W := e~ ¢, where Q: R — R is even and continuous in R,
Q > 0in (0,=), Q" is continuous in (0, «), while for some 4, B > 1,

As[%(xQ’(x))] Q(x)<B, xeR (1.1)
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386 D. M. MATJILA
We call such a W a Freud Weight. An archetypal example is
W, = exp(— [xI?), B> 1.

Corresponding to W? is a sequence of orthonormal polynomials {p,(x)},
where

pn('x) = pn(wz’x) = ‘y"x" + ?

is the nth orthonormal polynomial of W? and v, > 0 is its leading
coefficicnt. The zeros of p,(x) will be denoted by

- <x, <X

nn n—1.a

< s <, <Xy, <+

arranged in increasing order.
Let f: R — R be a continuous function such that

lim | f(x)W(x)(1+ IxD)" =0, (1.2)

ix]|—>x

for a > 0.
We define the error of polynomial approximation to f from the space
A, _, of all polynomials of degree at most n — | by

E(f)= inf |(f=P)(x)(1+ Ix)W(x)

res,

1, (1),

and so there exists a unique P* €42, _ | such that

Ef) =I(f = P51+ IxD) W) leo

since &, | is finite dimensional (cf. [1, p. 108]).

Let L, [f] €, _, denote the Lagrange interpolation polynomial to f at
the zeros of p,(x). Then

(f = LLF D) [W(x)
Sb:n(f)(l + |X|)7U + W(X) Z “kn(x)l’(f_ P*)(xkn)"
k=1

where

Pu( X)
p::(xkn)(x - xku)

Ikn( x) =
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are the fundamental polynomials associated with W?2. We then have
I(f = LIS DOW(x)]
< E (N0 + IxD) "+ ECHOW) 1 T (OIW g, (0+ Ixg, 1)

- (1.3)

We thus define the nth Lebesgue function associated with the rate of
decay in (1.2) by

A(x) = W(x) T L)W (21 + D) 5 (14)
k=1

Our objective in this paper is to determine the correct bounds for A, (x)
on the whole real line. Freud in [2, 3] studied the Lebesgue functions
associated with compactly supported distributions and the Hermite Weight
exp( —x?/2), respectively. Nevai on the other hand established bounds of
Lebesgue functions for the Laguerre Weight in [7] and then generalized
his work to cover Laguerre, Jacobi, and Hermite Weights in [8). For more
work on this subject the reader can also refer to Szabados and Vertesi {9]
and Knopfmacher [4], wherein bounds on Lebesgue functions were given
for a subclass of the weights considered in this paper.

This paper deals with the bounds of Lebesgue functions associated with
the same class of Freud Weights as studied by Levin and Lubinsky in [S].
To state our result we need some notation:

(1) Throughout, L,C,C,C,,... are positive constants independent
of n and x € R. The same symbol does not necessarily denote the same
constant in different occurrences.

(2) We use ~ notation in the following sense:

f(x) ~g(x)

if there exist positive constants C, and C, such that for the relevant range
of x,

f(x)
< e < (,.

(3) For u > 0, the uth Mhaskar—Rahmanov-Saff a, is the positive
root of the equation

A

C,

2 JE
u==[la1Qa)diyt -1 (1.5)
70
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388 D. M. MATIILA

(4) For « > 0,

a = min{l, a}, (1.6)

BN
Y (x) = max{n 1 — —), nx=1,xeR, (L.7)

all

and
1 a #+ 1
% - — ’
[Og (X) = {log(x), a = 1 (18)
(5) We set

xlln :len(l + ”72/3) and 'xn+lvn = xnn 1 + n—2/3). (19)

Our main result is the following theorem. Recall that ¢, log*, and &
are defined by (1.6)-(1.8).

Tueorem 1.1, (a) There exists n, and C|,C, such that for n > n, and
x| < 2a

A”(X) = C'l(l + |X|)7"
+ Cyfa, Ip, Wi {(1 + 1x) “w,(x)' " log[2n 2y, x)]
+(1 + ) ““log* n}. (1.10)

-«

log[2n2 Yy, (x)] + C,n!/5(1 + lx]) "% log* n.
(1.11)

< Cy)(1 + Ix])

(b) Let o €(0,1). There exists n, and C, such that uniformly for
n=>n,and |x| < oa,,

—«

Ax) ~ (1+ D)™ + ya, lp,WI(x){(1 + lx]) “logn + (1 + lx[) ™)

(1.12)
< C(1+ Ixl) “ 4 Cy(1 + 1xl) “log n. (1.13)

(c) There exists n,, such that uniformly for n > n, and x| > 2a,,
— 1 X
A (x) ~ ya, |an|(x){|”Ha,If“ log* n}. (1.14)

Remarks. (1) Observe that we don’t have ~ for oa, < |x| < 2a,. In
fact our proof shows that if k(x) = k(x,n) is such that x, ., is the
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closest zero of p,(x) to x, (and we define x_, ,.x | . X, ,2,, %, .3,
much as at (1.9)) then uniformly for n > 1 and |x| < 2a

"

‘1n(x) - W(X) Z ’lkn(x)’W-l(xkn)(l + |xkn|)‘a
kelk(x)=3, k(x)+3]

~ Va, I WI(O){(1 + x) “g,(x)" " log[2n°u,( x)]

+(1 + Ix!)‘(; log* n}. (1.15)

It is only the “closest terms’ for which we cannot provide a suitable lower
bound.

(I1) An interesting feature occurs for |1 — |x|/a,| < Cn~?/* For
this range ¢,(x) ~ n= /%, and (1.11) becomes for a # 1,

A (x) < Cy(1 + Ix) ™"+ Cun'/o(1 + |x]) ¢

in view of known bounds on [p,W|(x) (see (2.7) and (2.8) below). So the
characteristic factor of log » disappears for x close to a,,.

2. PRELIMINARY RESULTS

The proof of the main result is a consequence of a number of lemmas.

Lemma 2.1. (a) Forn > 1,

Xin

- 1l<Cn 7 (2.1)

a,

and uniformly forn > 3 and 1 <k <n,
_ 2 -2 22
Xi—1.n Xevlon n d’n(xkn) . ( . )
(b) Uniformly for 1 <k <n —tand n = 2,

W (x0) ~a; 2, (x)" " (2.3)

(c) Q'(x) is increasing in (0, <) and given 0 < o < B < =,

Q'(x) ~ i, uniformly forx € [aa,, Ba,]. (2.4)

n
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Proof. (a) This is Coroliary 1.2(a) in [5].
(b) This is Corollary 1.3 in [5].
(¢) This is Lemma 5.1(c) in [5]. ]

Lemma 220 (a) Uniformly forn > 1,1 <k <n, and x € R,
32

an —1/4
Ilkn(x)’ ~ TW(xku)‘ﬂbn(an) ’[)"(X)]/IX - xkn" (25)

(b) Uniformly forn = 1,1 <k <n, and x € R,

’[,\,,,(X)}W"(xk”)W(x) <C. (2'6)
(c)
lxl 1/4
(iy suplp,WI(x){1 — —| ~a;'2 (2.7)
xek n
(i)  suplp,Wl(x) ~n'/%a;1/2. (2.8)
xeR

Proof. Parts (a) and (b) are Lemma 2.6 in [6]. Part (c) is Corollary 1.4
in [5]. 1

We now turn to A, (x). Let x,,,, denote the closest abscissa to x. We
can assume x > 0. Now choose § > 0 small enough and M > 0 large
enough such that

{(k:lk(x) — k| <3} c {k: [x — x| < Mf;’«'w,,(x)*‘”}. (2.9)

This is possible because of (2.2).
We then split A,(x) as follows: Let

a, -
yl = {k:|x_xk,,| Sﬁ—?l/’n('x) ]/2};
I
a, —1/2
&y = k:lx-—xk,,|€~n—l//,,(x) (6, M)

. i . d, —-1/2
Fyo= Lk lx —x,, 2 M—=,(x) :
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Then

.1"(X) = [E,‘/’, + Z./‘z + Z,‘/J] W(x)“kn(x)lw(xkn)_l(l + !xlml)grr
= Li(x) + Ly(x) + Ly(x).

Next we estimate each sum.

L,(x). Observe that because of the spacing (2.2), £, has a finite
number of terms. Using (2.6) we obtain

L(x)<C ¥ (14 1x,l) "

ke.s

<C(1+ Ixh7° (2.10)

which is an easy consequence of (2.2). From (2.2) it follows that for
2<k<n—1,

I+ lri ~1+ |xkn|’ L e [xk+l,n’xkvl.n]' (211)

Now it is known that if x € [x,,, ,, x,,], for some 1 <k <n — I, then
(see [9, p. 76])

Ik+l‘n(x) + [kn(x) > 1.

Assume for simplicity that k = k(x) (if not, then x € [x,.x,_, ,] and
the argument is similar). Then

k(x)+1

W(x)y L L)W (x)(1 + 1) ©
j=k(x)
> C(1 + lx)) “W(x)min{W '(x,, ).

k(x)+1

Wﬁl('xk(x)drl,n)} Z |11"(x)‘

j=k(x)

> C(1 + Ixl) " W)min{W (xe00) W (Xkos 1))

by the abovementioned inequality.
Now if |x| < oa,, then for n large enough, the spacing (2.2) gives

a

n
~ —

X - X
k k+1, ]
n n
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so that for j = k, k + 1, and some ¢ between x, X
|Q(‘xjn) - Q(X)| = |Q,(§)| |xjn - X
a,
< ()'(arz)(jl—ww
n
<,
by Lemma 2.1(c). Then for j = k, k + 1,

W)W (x,,) = @m0 — 0~

uniformly for x| < oa,. So the above incquality becomes

A(x)+1 Cw
W(x) Z tlj”(x)’W"l(X]”)(l + |xjn|)
j=k(x)
>C(1+IxI) “. x|l <oa,. (2.12)

In particular, if ¥ ,(x) contains the terms in the last sum, we obtain from
(2.10) and (2.12) that

T (x) ~(1+Ixl) ", x| < oa,. (2.13)

,(x). Observe that for M > 0 large enough but fixed, the number of
terms in the set

a, -
Sy = {k: Ix —x,,1 € —,(x) (8. M)}
n

is bounded independently of x and n. Also ¢, (x) ~ ¢, (x,,) and
(n/a, ()" ?lx — x,,| ~ 1. Using (2.5) we obtain, if the sum is non-
empty,

-1y
To(x) ~ Va,lp,WI(x) ¥ 4 u(Xi) ]

ke, Ml = x (1 + Lxg,0)

~Va, lpWI(x) L ()1 + k)¢

ke,

~ Va, lp,WI(x)d,(x) (1 + Ix]) " (2.14)

Ly(x). Let

‘In = [xu+l,n’ X()"] \ [xk(,r}+3,n’ xk(x)*}.n]'
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From (2.9) it follows that

a, —1y2 a, 1,2
[xn+|.n’x()n]\(x_M_n—llln(x) ’X+M—’Td’n(x) C‘ln‘

We then estimate

ax) = L L)W () (1 + e, 1) 0

Xa €4,

instead. First note that from (2.5) and then (2.2),

y " U, (xe,)
Li(x) ~ Ja,lpWi(x) y a4, (x4,) _

kelk(o-3 ko+3 =X, (1 + x, 1)

393

. . . L/4
('xk~l.n - 'Xk+l.n)wn("kn)

~ Va,lp,WI(x) >

kelkon s =g+ e 1)
Now as k & [k(x) — 3, k(x) + 3],
x — x|~ lx =1l L€ [Xpiin Xao1 )
This follows from

X = Xpn xk*l,u ~Xistn

< C.

<1+

x —1 X = X,

The lower bound is obtained in a similar way. Thus we have

y(x) ~ Va, Ip,,WI(x)fjw,,(t)]/q(l + ey "/l — tlde, (2.15)

where J, is as defined earlier and we set
xn+3,n =xn+2.n=xn+l,n and X—Z.n=xfl.n = Xy

We have also used (2.11) and similar relations for |x — ¢].

Now we turn to the estimation of

I ;:f,;,n(,)‘/“‘(l + 1ty “/lx — tldt. (2.16)
IPV

We consider 6 ranges of x.
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Lemma 2.3.

Let x €[0,2). Then for n = n,, n, large enough and
independent of x,

I ~logn.
Proof.

i~ 1/1x = tldt + /“"(/;"(t)lﬂt*"*'dt
J,N[—4.4] 4

logn, a=10
1, a >0
~ logn. |

~logn+{

Lemma 2.4, Let x € [2,(3/4)a,]. Then

I~ 1+ 1x]) “logn+ (1 + Ix)™%
Proof. Now for t € {{t| = (7/8)a,} N J,,

1+ [e] ~ |t} and lx — ¢l ~ [,
and so
1/4 —a
L= (1) (U e/l ~ el ar
{lt1=(7/8)a,}NJ,
~f 7 dt
[(7/8)a,.(8/Da,]
~a,".
Furthermore,

L= b x) N+ 1) e =l de
{1t <(7/8)a,} I,

~ (1+ 1)) “/lx —tlde,
{r1<(7/8)a,}0J,

since (1) ~ 1 for this range of t.
Observe that

{ltl < (7/8)0"} mJn = {ltl < (7/8)0,,} \ [xk(x)+3.n’xk(x)fln]'
Now we split this set into J, for [ = 1,2, 3, where

teJY =t < x| /2,
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and thus
lx —¢] ~ |x].
s 8
relJP =t > =|x|,
7
and thus
lx = ¢] ~ [¢]
and
JO 1ll ft| 8||
te Y = x| <t} < =|x|,
2 7
and thus
lel ~ |x].
First,

L, = fjm(l + 1ty “/lx —tldt

l

1 -
|x—|fjm(1 + ey " dt

l ‘X|/2 -«
~— 1+t dt
|x] /() ( )

1

lx] "% log* |x].

(Recall the definitions (1.6) and (1.8) of & and log* n.)

= o _ ~ —a—1
I j;m(lJrltl) Jlx —tlde Jmt dt

x7o, a>0
log(a,/2x), a=20

a" l
~ t77 N de ~
(8/Dlxl

<c, (I1+ixl) ", a>0
7| log n, a=10

< Cy(1 + x1) “logn.
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Next
I, :=f (1+ 1)) “/lx = tlde
’ o
~ x| "'/ 1/lx — 1] dt
jl‘)
~ I,\'If“f 1/1x — t| dt
[-\'//2-2"']\l"'l\(\y- donr X bl
~ fa\‘|7”f 1/11 — sl ds
“/12]\[»"1\1\1» VLT ST s /%)
,! x/2 X
~ x| Ylog| ——————| + log| ———
AT ot Xiy—3.0 — X
~ x| “logn
as

X = Xpny+ 3n

‘l Xk(v\')+3.n> -

X X > Cs/n

{ < Cya,/n

SINCE X34y 3 — Xpoysan ~ d, /1, for x €[2,(3/4)a,]
So

I=1 +1,
~a,; "+ 1, + 1+ Iy
~a;+ (1 + lxl) “log*lx| + O((1 + Ixl) “logn)
+(1+ Ix) “logn
(1+ Ix1) 4 (1+ xI) “logn, a#1

(1+ ]x]) “logn, a=1

(1+ Ixl) “logn + (1 +1x)"“ 1}

?

Now Lemmas 2.3 and 2.4 and Eqgs. (2.15) and (2.16) vield;
Lemma 2.5, Forx € [0,(3/4)a, ],

£1(x) ~ Y, Ip W {(1+ 151) " Tog n + (1 + 1) %),
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Lemma 2.6, Letx € [(3/4)a,,
that x,, > a,(1 — Ln=*"*). Then

a,(1 — Ln~ %)), where L > 0 is so large
I~a;%log*n+ a7, (x)"* log[2112/3d;,,(x)].

Proof. In this case we have
| —(x/a,) <174 and 1 —(x/a,)>Ln "

Here

/ (1) (0 + 1) Ik — el de
(~%.a,/2)0,

_ 1/4 -
~a,'[ v () 1) e
(== a, /20,

since |x — | ~ a,.

Thus
Iy~ la™! W (D)7 ) dr
Lo e = 72N e e Xk — 3.a]
+a’1f (1 + (1)) “dt
[-a,/2.a,/2]
=1, + Iy
Now
Iy, < Cya, “log* n and I3, ~ a, % log* n.
Therefore

—a *
I, ~a, " log*n.
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Next we deal with

1, ::/ b, () 7+ 1)/ x — 1) d
[a,/2,=)J,

—a 1/4
~a,f (1) 1x =t di
[au/z"r()n]\[xk{\)#}.u'IA(l)f‘.n
—C —a/ 1/4
=a, [ (max{n=2/,1 = (Irl/a,)})
La, /2, 20, INDX k)« 30me Koy - 20a)
Jlx —tldt
_ _ 1/4
=a,,"f (max{n=2* 1 — s})
“/2-le»x/“;y]\['tk(‘)¢3.n/un--"Aqxj—],n/un]

/N(x/a,) = s|ds
= a; [ (max{n =2, (1 = (x/a))e})" /e = 1de,  (217)

K

n

where we have used the substitution 1 —s = (1 — x/a,)¢ and

K = [1 - (x()n/an) 1 \
"l 1= (x/a) 7201 - (x/a,)

1 - (xk(.r)+3,n/an) 1 - (xk(x)fln/an)
1_(x/an) ' 1_(X/a") .

Now

1 - (x(ln/an) 23
‘1—(x/a,, } (1—( /,,))ZO“/L)“/2

for L sufficiently large.
Then we can continue (2.17) as

n

~ g7 -2/3 1 — 1/4 Cllde
a /,,n(—m I/2](maX{n N (x/a,))e }) yars | di

— -2/3 1 _ , 1/4 o ‘

+ f nliy2 1/2](max{n 1= (x/a))e}) /e = 1l de

+ a,j"fK o2 )(max{n_2/3,(1 — (x/a,,))lv})lﬂlv — 1ldr
JRars B

=0+ 1+ 1,5
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Note that (x/a,) = 3/4 and so 1/2(1 — (x/a,)) = 2. Now consider
I;;- Now € K, N (=2,1/2] = |v — 1] ~ 1. So

1/4

Iy ~a;* max{n*7?, (1 — (x/a,))v dv
41 n fK"(‘n(—m,l/Z]( [ ( ( / 1)) })
~ an—a[[“_()‘nn/”n)l/(l(x/“n))n—l/() dr
0
1,2 1/4
+ (1= (x/a,))e]" ar
1 —Crguzad) /(= Cx/a, )
1 = (xy,/a,) 1/4
~a VO — "M L coat(1 = (x/a, )
an 1—(x/a") T%n ( ( / n))
But now
1 - (xp./a,) 1/4
el < Cea%(1 - a /.
an 1 _ (x/a,,) - Ban ( (X/ n))
Thus

Iy ~a;“(1 - (x/a,))"".

I,,- We have (1 — (x/a,)v ~ 1 — (x/a,), and so

Iy ~a;4(x)" [ 1/le = Hdv
K,n([1,2,3/4)

- (/4
:a o
nWalX) U= (Kecey o5 n/@n) 1= (Eace) -3 0/80)

1—(x/a,) ' I=(x/a,)

[1/2‘3/2]\[

o 1/4
= n dl"(x) f[ ]*(Xk(xul,n/”n)]

2= 1-(x/a,)
+/ 1= (Xx(x)-2,n/a,) 32 1/|L‘ — lldv
l—(x/a,)
—a oy (x)1/4 log 1= (x/a,)
o z(xk(x)—ln _x)/an
| 1~ (x/a,)
+lo .
& Z(X _xk(x)+3,n)/an

399

1/lv — 1ldre
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Observe that

:___{k;:l_ _ (x—xktlu)/an - (xkfl,n_xk-rln)/an
I - (x/a,) | 1= (x/a,) 1 - (x/a,)
w0 (= (aa))
n(l —(x/a,)) n

as[l — (x/a,) = Ln=%" for x € (x| . X,_, ) and
[1 = (xpp2n/a)] ~[1 - (x/a,)]
It follows that
Ly ~ a; ¢, (x)"* log{n[l - (x/a,,)]"‘/z}
~ a,f"tjf,,(x)l/4 log[2n2/3w,,(x)].
Now n?/* (x) = L. Thus I,, > I,, and so

14] + 142 ~ an_adln('x)l/4 IOg[2n2/3l//n( x)] .

Furthermore,
Iy = a;n/ [1 - (x/an)]l/4”l/4/|l’ ~ 1l dv
K,N[3/2,%)
:arT“[I - (X/an)]l/4f 1'73/4611'
K,N{3,2,x)
as v € K, N[3/2,) = v — 1~ . Hence
1
143 ~ aniu(i[jn("t)l/“lv'/4 2[1 - (x/an)]

3/4

~a, () () = (379

—
n »

~d
since ¢, (x)""* — 1 ~ ¢, (x)”"/* Thus
Iy=14 + 1y + L
~a,;{[1 = (x/a,)]"* + g, (x)*log[2n*y,(x)] + 1]

~ a, W, (x)" log[2n*y,(x)].
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Therefore
[=1+1,
~a;%log*n + a;"tl/,,(x)]/4 log[2nz/3([1“(x)]. |
Now from Lemma 2.6 and Eqs. (2.15) and (2.16) we obtain
LEmmA 2.7. Forx € {(3/8)a,,a,(1 — Ln=*Y)], L > 0, large enough,
£a(x) ~ a, lp,Wi(x){a "4 log* n + azou,(x)"*log[2n*/y,( x)]}.

Remark. Observe that for |x| < 3/a,, ,(x) ~ 1 and n* ¢y (x) ~
n*?. So

log[2n?/*y,(x)] ~ log n.
Thus for |x| < (3/4)a,, we can recast Lemma 2.5 as
£2(x) ~ Ya, lp,WI(x){(1 + 1x]) ", (x)"* log[2n* 0, (x)]

+(1 + |x)* log* n}.
Thus we have

Lemma 2.8. Let x| < a,(1 — Ln %), Then
£3(x) ~ Va, lp W) {(1 + 1xD) g, (x) " log[2n2 ()]
+(1 + le)ﬂi log* n}.
Lemma 2.9. Let |1 — (x/a,)| < Ln~*7, L > 0 large enough. Then
£1(x) ~ Va, W) {(1 + 1x1) “w,(x)" 1og[2n* g, (x)]
+(1 + le)_‘; log* n}.

Proof. Here we write

1~ (O + 1el) "/ 1x - lde
],,n[—a,,/z,a"/z]

+f G () + 1) /e — el de
J.la,/2,2a,]

= I+ 1,

since all the zeros of p,(x) are inside [—2a4,,2a,].
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Now fort €J, n[—-a,/2,a,/2], ,(¢) ~ 1L and Ix — t| ~a,.So

15~a,,"/ (L+ [t) “dt
J,,ﬁ[«a,,/Z,a,,/Z]
~a;%log*n.

Next consider I. For this range we have ¢ ~ a,. Thus

—a 14
Iy~a; [ (1) 1x — tl dr
J,nla, /2, 2a,)
— 1/4
=a;"f b()'/1x = 1l de
Jonla, 72, 2a,1080: [ za,)— 1] <2Ln 273
- 1/4
+ayf 1)/ \x = ¢l di
J,00a,/2, 20,108 [(t/a,)— 1 22 Ln %%
= 1()] + 1{12'

Here for large enough n

~ g @, 1/6
I, ~a,%n

"

/ I/|x — t]dt
L, |G sa,) -1 <20n=23)

=a, “n" /" 1/[(x/a,) —s|ds
Jy /a0 s ls—1<2Ln™?%

IA

Coa,*n~"logn < Cya, * logn.
Next
I(t/a,) — 1| = 2Ln"2/"
= lx—tl =a,l[1-(/a)] - [1 - (x/a)]| 2 a,|1 = (t/a,)|/2
as |1 —(x/a,)| <Ln*? < (/D1 — (t/a,)|. Hence

5 1/4
I; < Ciya ! (max{n~ %1~ (1/a,)})) g /
Jnnila, /2, 24,0\ M fa, )= 1] 2 200 737

It = (t/a,)ldt

<Cpa;* ' [ 1= /el ar
J

n

=C”a“‘f 1 —s) *ds
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as (1 — s)~** is integrable. Hence
I~a,%log*n+1I,+1,
~a, “log* n,

and thus

~ \/217|P,,W|(x){(1 + lxl)""w,,(.\')l/4log[2;13/3a/;”(x)]
+(1+ Ix1) “log* n}
since ¢, (x)"*logl2n**y (x)] = O(n™"/*log n) = o(1). |

Consequently Lemma 2.8 and Lemma 2.9 yield

Lemma 2.10. For x| < a1 + Ln=%%), L > 0, large enough,

£y(x) ~ Va, lp,W1(x){(1 + [x1) “w,(x)" " log[2n* 2y, (x)]

+(1+ Ix) "¢ log* n).
Lemma 211, Letx € [a,(1 + Ln=%/?),2a,], L > 0 large enough. Then

£a(x) ~ Va, Ip W) {(1+ IxD) " "w,(x)" " log[2n* 3y, ( x)]

+(1 + lxl)ﬂ; log* n}.

Proof. 1f L is large enough, we have lx,,,;,l <a,(0 + Ln=%7)
Then

o= [ () (4 )7l = e

~ [ w0 1)l - el de

[0, x,,,]
= G, () + 1)l —
[0.a,/2]
1/4 —a
+ ()L + 1)/ lx = el de
[“n/zv-"nn]
=1, + .

640,79/3-7
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Now

L~a,' [“7(0+0) " a

n
(

~a, “log* n.
Now if L is large enough, we have for r € [a,/2, x,,], that
x =t = x,,(1 +n %) —t
= xg, max{n SR~ (t/x(,")}
> C,a, max{n~?*1 - (t/a,))
= Cpa,b,(1)
in view of (1.9) and (2.1). So
lstma,,’"f b, (1) /e —tldt

la, /2. xy,]

< Cha, ! f[ ]w,,(t)““ dr

4,/2, xy,

=C|4an‘“/ (max{n 23 1 —s})73/4ds
[1/2.x,,/a,]

< Ca,“.

n

Thus
I ~a;%log*n.
Also in this case,
,(x) log[2n?y,(x)] = O(n~ "/ log n) = o(1).

Therefore

£3(x) ~ Ya, IpWI(){(1 + 1x) ", ()" log[2n2 s, (x)]
+(1+ Ix) “log*n}. 1
LemMa 212, There exists n, such that uniformly for n > n, and
x € [2a,, ),
1

Ay (x) ~ \/ZIP,,Wl(X)ma,‘,“* log* n.
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Proof. Recall that all the zeros of p,(x) lie in {x: |x| <a,(1 +
Ln~%/%)}, for some fixed large L > 0. So for n large enough,

lx — x| ~ Ixl, uniformly for 1 < k <n,and x = 24,

Then (2.5) gives uniformly for x > 2a,,
. 1 ! —1/4 -a 4y
/1Il(x) ~ Van Ip,,W|(A)——— Z ll]n(xkn) (l + |xknl) .
x| =, n
As in our estimate for i_;, we deduce that

1 Xon —a
ALx) ~a W) T [ (0 1) T

Tatlon
I
~ Jan |an|(x)marl “ lOg* n,

exactly as in Lemma 2.6. ||

3. PrROOF OF THE REsuLT

Proof of Theorem 1.1. (a) For |x| < 2a
2.10, 2.11 give

A(x) = Ey(x) + Ey(x) + E5(x)
<C(1+Ix) *
+ Cya, lp W1 (2 %)/ (1 + Ix)) ™
+ Ca, I WI(x){(1 + 1x]) ", (x) log[2n 2y, (1)]

+(1 + lx]) " log* n}. (3.1)

(2.10), (2.14), and Lemmas

n?

Since 2n?/*y (x) = 1, we see that the middle term of the sum may be
omitted, and we obtain (1.10). Since (2.7), (2.8) show that

Va.lpWi(x)w,(x)"* < ¢, (32)
and
Va,lp,W(x) < C,n'/ (3.3)

we obtain also (1.11).
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(b) For |x| < oa, the sums 2, and ¥, are non-empty because of the
spacing (2.2), if & and M are suitably chosen. Then (2.12), (2.14), and
Lemma 2.10 give (3.1) with < replaced by ~ . Moreover for this range,

d,(x) ~ 1

and we obtain (1.12): We no longer need log* n because if a = 1, the
log n is already present. Using our bounds (3.2) for p,(x) gives (1.13).

(¢) This is Lemma 2.12. |

ACKNOWLEDGMENT

This paper forms part of my Ph.D. thesis at Witwatersrand University, Johannesburg.

REFERENCES

1. Z. Drrziax anp V. Totik, “Moduli of Smoothness,” Springer Series in Computational
Mathematics, Vol. 9, Springer, Berlin, 1987.

. G. FreuDp, Lagrangesche Interpolation liber die Nullstellen der Hermiteschen Orthogo-
nalpolynome, Studia Sci. Math. Hungar. 4 (1969), 179-190.

3. G. Freun, "“Orthogonal Polynomials,” Pergamon Press/Akademiai Kiado. Budapest/
Oxford, 1971,

4. A. KNoPFMACHER, “Linear Operators and Christotfel Functions Associated with Orthogo-
nal Polynomials,” Ph.D. Thesis, University of the Witwatersrand, Johannesburg, 1985,

S. A. L. Levin anp D. S, Lusinsky, Christoftel functions, orthogonal polynomials, and
Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.

6. D. S. Luninsky anp F. Moricz, The weighted £ -norms of orthogonal polynomials for
Freud weights, J. Approx. Theory 77 (1994), 42-50.

7. P. Neval, Lagrange interpolation at the zeros of Laguerre polynomials, Mat. Lapok 22
(1971), 149-164. [In Hungarian]}

8. P. Nevar, Fourier series and interpolation, 11, Mat. Lapok 24 (1973), 49-61.

9. J. SzaBADOS AND P. VERrTESI, “Interpolation of Functions,” World Scientific, Singapore,

1990).

2]



