Bounds for Lebesgue Functions for Freud Weights

D. M. Mathila

Department of Mathematics, Unitersity of the North, Private Bag X1106,
Sot enga 0727, Republic of South Africa
Communicated by Doron S. Luhinsky
Received May 10, 1993; accepted in revised form September 24, 1993

Let $W(x):=e^{-Q(x)}, x \in R_{\text {, }}$, where $Q(x)$ is even and continuous in $T_{R} Q^{\prime \prime}$ is continuous in ($0, x$), and $Q^{\prime}>0$ in ($0, x$), while for some $A, B>1$,

$$
A \leq\left[\frac{d}{d x}\left(x Q^{\prime}(x)\right)\right] / Q^{\prime}(x) \leq B, \quad x \in(0, x)
$$

Let $p_{n}\left(W^{2}, x\right)$ denote the nth orthonormal polynomial for the weight $W^{2}(x)$, $x_{k n}\left(W^{2}\right)$ the k th zero of $p_{n}\left(W^{2}, x\right)$, and $l_{k n}(x)$ the fundamental polynomials. Moreover let a_{n} denote the nth Mhaskar-Rahmanor-Saff number for Q and let $\sigma \in(0,1)$. Then we show that the nth weighted Lebesgue function satisfies uniformly for $|\boldsymbol{x}| \leq \sigma a_{n}$,

$$
\begin{aligned}
& W(x) \sum_{k=1}^{n}\left|l_{k n}(x)\right| W^{-1}\left(x_{k n}\right)\left(1+\left|x_{k n}\right|\right)^{-\alpha} \\
& \quad \sim(1+|x|)^{-\alpha}+\sqrt{a}_{n}\left|p_{n}\left(W^{2}, x\right)\right| W(x)\left\{(1+|x|)^{-\alpha} \log n+(1+|x|)^{-\dot{\alpha}}\right\}, \\
& \quad \leq C\left\{(1+|x|)^{-\alpha} \log n+(1+|x|)^{-\dot{\alpha}}\right\},
\end{aligned}
$$

where $\alpha \geq 0$ and $\hat{\alpha}:=\min \{1, \alpha\}$. We also modify this result to the whole real line. ©: 1994 Academic Press. Inc.

1. Introduction and Results

We consider $W:=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even and continuous in \mathbb{R}, $Q^{\prime}>0$ in ($0, \infty$), $Q^{\prime \prime}$ is continuous in ($0, \infty$), while for some $A, B>1$,

$$
\begin{equation*}
A \leq\left[\frac{d}{d x}\left(x Q^{\prime}(x)\right)\right] / Q^{\prime}(x) \leq B, \quad x \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

We call such a W a Freud Weight. An archetypal example is

$$
W_{\beta}:=\exp \left(-|x|^{\beta}\right), \quad \beta>1
$$

Corresponding to W^{2} is a sequence of orthonormal polynomials $\left\{p_{n}(x)\right\}$, where

$$
p_{n}(x):=p_{n}\left(W^{2}, x\right)=\gamma_{n} x^{n}+\cdots,
$$

is the nth orthonormal polynomial of W^{2} and $\gamma_{n}>0$ is its leading coefficient. The zeros of $p_{n}(x)$ will be denoted by

$$
-\infty<x_{n n}<x_{n-1 . n}<\cdots<x_{2 n}<x_{1 n}<+\infty
$$

arranged in increasing order.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|f(x)| W(x)(1+|x|)^{\wedge}=0 \tag{1.2}
\end{equation*}
$$

for $\alpha \geq 0$.
We define the error of polynomial approximation to f from the space \mathscr{P}_{n-1} of all polynomials of degree at most $n-1$ by

$$
E_{n}(f):=\inf _{p \in \mathscr{P}_{n},}\left\|(f-P)(x)(1+|x|)^{« x} W(x)\right\|_{L_{-x}(\| f)}
$$

and so there exists a unique $P^{*} \in \mathscr{D}_{n-1}$ such that

$$
E_{n}(f)=\left\|\left(f-P^{*}\right)(x)(1+|x|)^{\alpha} W(x)\right\|_{L_{x}(\mathbb{F})}
$$

since \mathscr{P}_{11-1} is finite dimensional (cf. [1, p. 108]).
Let $L_{n}[f] \in \mathscr{P}_{n-1}$ denote the Lagrange interpolation polynomial to f at the zeros of $p_{n}(x)$. Then

$$
\begin{aligned}
& \left|\left(f-L_{n}[f]\right)(x)\right| W(x) \\
& \quad \leq E_{n}(f)(1+|x|)^{-\alpha}+W(x) \sum_{k=1}^{n}\left|l_{k n}(x)\right|\left|\left(f-P^{*}\right)\left(x_{k n}\right)\right|
\end{aligned}
$$

where

$$
l_{k n}(x):=\frac{p_{n}(x)}{p_{n}^{\prime}\left(x_{k n}\right)\left(x-x_{k n \prime}\right)}
$$

are the fundamental polynomials associated with W^{2}. We then have

$$
\begin{align*}
& \left|\left(f-L_{n}[f]\right)(x) W(x)\right| \\
& \quad \leq E_{n}(f)(1+|x|)^{-x}+E_{n}(f) W(x) \sum_{k-1}^{n}\left|t_{k n}(x)\right| W^{-1}\left(x_{k n}\right)\left(1+\left|x_{k n}\right|\right)^{-\alpha} . \tag{1.3}
\end{align*}
$$

We thus define the nth Lebesgue function associated with the rate of decay in (1.2) by

$$
\begin{equation*}
A_{n}(x):=W(x) \sum_{k=1}^{n}\left|l_{k n}(x)\right| W^{-1}\left(x_{k n}\right)\left(1+\left|x_{k n}\right|\right)^{-\alpha} . \tag{1.4}
\end{equation*}
$$

Our objective in this paper is to determine the correct bounds for $A_{n},(x)$ on the whole real line. Freud in $[2,3]$ studied the Lebesgue functions associated with compactly supported distributions and the Hermite Weight $\exp \left(-x^{2} / 2\right)$, respectively. Nevai on the other hand established bounds of Lebesgue functions for the Laguerre Weight in [7] and then generalized his work to cover Laguerre, Jacobi, and Hermite Weights in [8]. For more work on this subject the reader can also refer to Szabados and Vertesi [9] and Knopfmacher [4], wherein bounds on Lebesgue functions were given for a subclass of the weights considered in this paper.

This paper deals with the bounds of Lebesgue functions associated with the same class of Freud Weights as studied by Levin and Lubinsky in [5]. To state our result we need some notation:
(1) Throughout, $L, C, C_{1}, C_{2}, \ldots$ are positive constants independent of n and $x \in \mathbb{R}$. The same symbol does not necessarily denote the same constant in different occurrences.
(2) We use \sim notation in the following sense:

$$
f(x) \sim g(x)
$$

if there exist positive constants C_{1} and C_{2} such that for the relevant range of x,

$$
C_{1} \leq \frac{f(x)}{g(x)} \leq C_{2} .
$$

(3) For $u>0$, the u th Mhaskar-Rahmanol-Saff a_{u} is the positive root of the equation

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) d t / \sqrt{1-t^{2}} \tag{1.5}
\end{equation*}
$$

(4) For $\alpha \geq 0$,

$$
\begin{gather*}
\hat{\alpha}:=\min \{1, \alpha\}, \tag{1.6}\\
\psi_{n}(x):=\max \left\{n^{-2 / 3}, 1-\frac{|x|}{a_{n}}\right\}, \quad n \geq 1, x \in \mathbb{R}, \tag{1.7}
\end{gather*}
$$

and

$$
\log ^{*}(x):= \begin{cases}1, & \alpha \neq 1 \tag{1.8}\\ \log (x), & \alpha=1\end{cases}
$$

(5) We set

$$
\begin{equation*}
x_{01 n}:=x_{1 n}\left(1+n^{-2 / 3}\right) \quad \text { and } \quad x_{n+1, n}:=x_{n n}\left(1+n^{-2 / 3}\right) \tag{1.9}
\end{equation*}
$$

Our main result is the following theorem. Recall that $\psi_{n}, \log ^{*}$, and $\hat{\alpha}$ are defined by (1.6)-(1.8).

Theorem 1.1. (a) There exists n_{0} and C_{1}, C_{2} such that for $n \geq n_{0}$ and $|x| \leq 2 a_{n}$,

$$
\begin{align*}
& A_{n}(x) \leq C_{1}(1+|x|)^{-\alpha} \\
&+C_{1} \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha}\right. \\
& \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right] \tag{1.10}\\
&\left.+(1+|x|)^{-\hat{\alpha}} \log ^{*} n\right\} \cdot \tag{1.11}\\
& \leq C_{2}(1+|x| 10
\end{align*}
$$

(b) Let $\sigma \in(0,1)$. There exists n_{0} and C_{3} such that uniformly for $n \geq n_{0}$ and $|x| \leq \sigma a_{n}$,

$$
\begin{align*}
A_{n}(x) & \sim(1+|x|)^{-\alpha}+\sqrt{a_{n}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \log n+(1+|x|)^{-\dot{\alpha}}\right\}} \tag{1.12}\\
& \leq C_{3}(1+|x|)^{-\dot{\alpha}}+C_{3}(1+|x|)^{-\alpha} \log n . \tag{1.13}
\end{align*}
$$

(c) There exists n_{0} such that uniformly for $n \geq n_{0}$ and $|x| \geq 2 a_{n}$,

$$
\begin{equation*}
A_{n}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{\frac{1}{|x|} a_{n}^{1-\hat{\alpha}} \log ^{*} n\right\} . \tag{1.14}
\end{equation*}
$$

Remarks. (I) Observe that we don't have \sim for $\sigma a_{n} \leq|x| \leq 2 a_{n}$. In fact our proof shows that if $k(x)=k(x, n)$ is such that $x_{k(x), n}$ is the
closest zero of $p_{n}(x)$ to x, (and we define $x_{-2, n}, x_{-1, n}, x_{n+2, n}, x_{n+3, n}$ much as at (1.9)) then uniformly for $n \geq 1$ and $|x| \leq 2 a_{n}$,

$$
\begin{array}{r}
A_{n}(x)-W(x) \sum_{k \in[k(x)-3, k(x)+3]}\left|I_{k n}(x)\right| W^{-1}\left(x_{k n}\right)\left(1+\left|x_{k n}\right|\right)^{-\alpha x} \\
\sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
\left.+(1+|x|)^{-\dot{\alpha}} \log ^{*} n\right\} \tag{1.15}
\end{array}
$$

It is only the "closest terms" for which we cannot provide a suitable lower bound.
(II) An interesting feature occurs for $\left|1-|x| / a_{n}\right| \leq C n^{-2 / 3}$. For this range $\psi_{n}(x) \sim n^{-2 / 3}$, and (1.11) becomes for $\alpha \neq 1$,

$$
A_{n}(x) \leq C_{4}(1+|x|)^{-\alpha}+C_{4} n^{1 / 5}(1+|x|)^{-\dot{x}}
$$

in view of known bounds on $\left|p_{n} W\right|(x)$ (see (2.7) and (2.8) below). So the characteristic factor of $\log n$ disappears for x close to a_{n}.

2. Preliminary Results

The proof of the main result is a consequence of a number of lemmas.
Lemma 2.1. (a) For $n \geq 1$,

$$
\begin{equation*}
\left|\frac{x_{1 n}}{a_{n}}-1\right| \leq C n^{-2 / 3} \tag{2.1}
\end{equation*}
$$

and uniformly for $n \geq 3$ and $1 \leq k \leq n$,

$$
\begin{equation*}
x_{k-1, n}-x_{k+1, n} \sim \frac{a_{n}}{n} \psi_{n}\left(x_{k n}\right)^{-1 / 2} \tag{2.2}
\end{equation*}
$$

(b) Uniformly for $1 \leq k \leq n-1$ and $n \geq 2$,

$$
\begin{equation*}
\left|p_{n} W\right|\left(x_{k n}\right) \sim a_{n}^{-1 / 2} \psi_{n}\left(x_{k n}\right)^{1 / 4} \tag{2.3}
\end{equation*}
$$

(c) $Q^{\prime}(x)$ is increasing in $(0, \infty)$ and given $0<\alpha<\beta<\infty$,

$$
\begin{equation*}
Q^{\prime}(x) \sim \frac{n}{a_{n}}, \quad \text { uniformly for } x \in\left[\alpha a_{n}, \beta a_{n}\right] \tag{2.4}
\end{equation*}
$$

Proof. (a) This is Corollary 1.2(a) in [5].
(b) This is Corollary 1.3 in [5].
(c) This is Lemma 5.1(c) in [5].

Lemma 2.2. (a) Uniformly for $n \geq 1,1 \leq k \leq n$, and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|l_{k n}(x)\right| \sim \frac{a_{n}^{3 / 2}}{n} W\left(x_{k n}\right) \psi_{n}\left(x_{k n}\right)^{-1 / 4}\left|p_{n}(x)\right| /\left|x-x_{k n}\right| \tag{2.5}
\end{equation*}
$$

(b) Uniformly for $n \geq 1,1 \leq k \leq n$, and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|l_{k n}(x)\right| W^{-1}\left(x_{k n}\right) W(x) \leq C \tag{2.6}
\end{equation*}
$$

(c)

$$
\begin{align*}
& \text { (i) } \sup _{x \in \mathbb{B}}\left|p_{n} W\right|(x)\left|1-\frac{|x|}{a_{n}}\right|^{1 / 4} \sim a_{n}^{-1 / 2} \tag{2.7}\\
& \text { (ii) } \sup _{x \in \mathscr{B}}\left|p_{n} W\right|(x) \sim n^{1 / 6} a_{n}^{-1 / 2} . \tag{2.8}
\end{align*}
$$

Proof. Parts (a) and (b) are Lemma 2.6 in [6]. Part (c) is Corollary 1.4 in [5].

We now turn to $\Lambda_{n}(x)$. Let $x_{k(x), n}$ denote the closest abscissa to x. We can assume $x \geq 0$. Now choose $\delta>0$ small enough and $M>0$ large enough such that

$$
\begin{equation*}
\{k:|k(x)-k| \leq 3\} \subset\left\{k:\left|x-x_{k n t}\right| \leq M \frac{a_{n}}{n} \psi_{n}(x)^{-1 / 2}\right\} \tag{2.9}
\end{equation*}
$$

This is possible because of (2.2).
We then split $\Lambda_{n}(x)$ as follows: Let

$$
\begin{aligned}
& \mathscr{S}_{1}:=\left\{k:\left|x-x_{k n}\right| \leq \delta \frac{a_{n}}{n} \psi_{n}(x)^{-1 / 2}\right\} \\
& \mathscr{S}_{2}:=\left\{k:\left|x-x_{k n}\right| \in \frac{a_{n}}{n} \psi_{n}(x)^{-1 / 2}(\delta, M)\right\} \\
& \mathscr{S}_{3}:=\left\{k:\left|x-x_{k n}\right| \geq M \frac{a_{n}}{n} \psi_{n}(x)^{-1 / 2}\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A_{n}(x) & =\left[\sum_{y_{1}}+\sum_{\gamma_{2}}+\sum_{y_{3}}\right] W(x)\left|l_{k n}(x)\right| W\left(x_{k n}\right)^{-1}\left(1+\left|x_{k n}\right|\right)^{-\alpha} \\
& =\Sigma_{1}(x)+\sum_{2}(x)+\sum_{3}(x)
\end{aligned}
$$

Next we estimate each sum.
$\sum_{1}(x)$. Observe that because of the spacing (2.2), Σ_{1} has a finite number of terms. Using (2.6) we obtain

$$
\begin{align*}
\Sigma_{1}(x) & \leq C \sum_{k \in \mathscr{L}_{1}}\left(1+\left|x_{k n}\right|\right)^{-\alpha} \\
& \leq C_{1}(1+|x|)^{-\alpha} \tag{2.10}
\end{align*}
$$

which is an easy consequence of (2.2). From (2.2) it follows that for $2 \leq k \leq n-1$,

$$
\begin{equation*}
1+|t| \sim 1+\left|x_{k n}\right|, \quad t \in\left[x_{k+1, n}, x_{k-1, n}\right] \tag{2.11}
\end{equation*}
$$

Now it is known that if $x \in\left[x_{k+1, n}, x_{k n}\right]$, for some $1 \leq k \leq n-1$, then (see [9, p. 76])

$$
l_{k+1, n}(x)+l_{k n}(x) \geq 1
$$

Assume for simplicity that $k=k(x)$ (if not, then $x \in\left[x_{k n}, x_{k-1, n}\right]$ and the argument is similar). Then

$$
\begin{aligned}
& W(x) \sum_{j=k(x)}^{k(x)+1}\left|l_{j n}(x)\right| W^{-1}\left(x_{j n}\right)\left(1+\left|x_{j n}\right|\right)^{-\alpha} \\
& \geq C(1+|x|)^{-\alpha} W(x) \min \left\{W^{-1}\left(x_{k(x), n}\right),\right. \\
& \left.\quad W^{-1}\left(x_{k(x)+1, n}\right)\right\} \sum_{j=k(x)}^{k(x)+1}\left|l_{j n}(x)\right| \\
& \geq C(1+|x|)^{-\alpha} W(x) \min \left\{W^{-1}\left(x_{k(x), n}\right), W^{-1}\left(x_{k(x)+1, n}\right)\right\},
\end{aligned}
$$

by the abovementioned inequality.
Now if $|x| \leq \sigma a_{n}$, then for n large enough, the spacing (2.2) gives

$$
x_{k n}-x_{k+1, n} \sim \frac{a_{n}}{n}
$$

so that for $j=k, k+1$, and some ξ between $x, x_{j n}$,

$$
\begin{aligned}
\mid Q\left(x_{i n}\right)- & Q(x)\left|=\left|Q^{\prime}(\xi)\right|\right| x_{j n}-x \mid \\
& \leq Q^{\prime}\left(a_{n}\right) C_{1} \frac{a_{n}}{n} \\
& \leq C_{2}
\end{aligned}
$$

by Lemma 2.1(c). Then for $j=k, k+1$,

$$
W(x) W^{1}\left(x_{j n}\right)=e^{Q\left(x_{m}\right)-Q(x)}=e^{O(1)} \sim 1,
$$

uniformly for $|x| \leq \sigma a_{n}$. So the above inequality becomes

$$
\begin{gather*}
W(x) \sum_{j-k(x)}^{k(x)+1}\left|I_{j n}(x)\right| W^{-1}\left(x_{j n}\right)\left(1+\left|x_{j n}\right|\right)^{-\alpha} \\
\geq C(1+|x|)^{-\alpha}, \quad|x| \leq \sigma a_{n} . \tag{2.12}
\end{gather*}
$$

In particular, if $\sum_{1}(x)$ contains the terms in the last sum, we obtain from (2.10) and (2.12) that

$$
\begin{equation*}
\sum_{1}(x) \sim(1+|x|)^{-\sigma}, \quad|x| \leq \sigma a_{n} \tag{2.13}
\end{equation*}
$$

$\Sigma_{2}(x)$. Observe that for $M>0$ large enough but fixed, the number of terms in the set

$$
\mathscr{H}_{2}:=\left\{k:\left|x-x_{k n}\right| \in \frac{a_{n}}{n} \psi_{n}(x)^{-1 / 2}(\delta, M)\right\}
$$

is bounded independently of x and n. Also $\psi_{n}(x) \sim \psi_{n}\left(x_{k n}\right)$ and ($\left.n / a_{n}\right) \psi_{n}(x)^{1 / 2}\left|x-x_{k n}\right| \sim 1$. Using (2.5) we obtain, if the sum is nonempty,

$$
\begin{align*}
\Sigma_{2}(x) & \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \sum_{k \in I_{2}} \frac{a_{n}}{n} \frac{\psi_{n}\left(x_{k n}\right)^{-1 / 4}}{\left|x-x_{k n}\right|\left(1+\left|x_{k n}\right|\right)^{\alpha}} \\
& \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \sum_{k \in \mathscr{S}_{2}} \psi_{n}(x)^{1 / 4}(1+|x|)^{-\alpha} \\
& \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \psi_{n}(x)^{1 / 4}(1+|x|)^{-\alpha} \tag{2.14}
\end{align*}
$$

$\sum_{3}(x)$. Let

$$
J_{n}:=\left[x_{n+1, n}, x_{0 n}\right] \backslash\left[x_{k(x)+3, n}, x_{k(x)-3, n}\right] .
$$

From (2.9) it follows that

$$
\left[x_{n+1, n}, x_{0 n}\right] \backslash\left(x-M \frac{a_{n}}{n} \psi_{n}(x)^{-1 / 2}, x+M \frac{a_{n}}{n} \psi_{n}(x)^{-1 / 2}\right) \subset J_{n} .
$$

We then estimate

$$
\hat{\Sigma}_{3}(x):=\sum_{x_{k n} \in J_{n}}\left|l_{k n}(x)\right| W^{-1}\left(x_{k n}\right)\left(1+\left|x_{k n}\right|\right)^{-\alpha}
$$

instead. First note that from (2.5) and then (2.2),

$$
\begin{aligned}
\hat{\Sigma}_{3}(x) & \sim \sqrt{ } a_{n}\left|p_{n} W\right|(x) \sum_{k \notin \mid k(x) \cdots, k(x)+3]} \frac{a_{n}}{n} \frac{\psi_{n}\left(x_{k n}\right)^{-1 / 4}}{\left|x-x_{k n}\right|\left(1+\left|x_{k n}\right|\right)^{-\alpha}} \\
& \sim \sqrt{a_{n}\left|p_{n} W\right|(x)} \sum_{k \notin[k(x)-3, k(x)+3]} \frac{\left(x_{k-1, n}-x_{k+1, n}\right) \psi_{n}\left(\left.x_{k n}\right|^{1 / 4}\right.}{\left|x-x_{k n}\right|\left(1+\left|x_{k n}\right|\right)^{n}}
\end{aligned}
$$

Now as $k \notin[k(x)-3, k(x)+3]$,

$$
\left|x-x_{k n}\right| \sim|x-t|, \quad t \in\left[x_{k+1, n}, x_{k-1, n}\right]
$$

This follows from

$$
\left|\frac{x-x_{k n}}{x-t}\right| \leq 1+\frac{x_{k-1, n}-x_{k+1, n}}{x-x_{k n}} \leq C .
$$

The lower bound is obtained in a similar way. Thus we have

$$
\begin{equation*}
\hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \int_{J_{n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-a} /|x-t| d t \tag{2.15}
\end{equation*}
$$

where J_{n} is as defined earlier and we set

$$
x_{n+3, n}=x_{n+2, n}=x_{n+1, n} \quad \text { and } \quad x_{-2, n}=x_{-1, n}=x_{0 n} .
$$

We have also used (2.11) and similar relations for $|x-t|$.
Now we turn to the estimation of

$$
\begin{equation*}
I:=\int_{J_{n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \tag{2.16}
\end{equation*}
$$

We consider 6 ranges of x.

Lemma 2.3. Let $x \in[0,2]$. Then for $n \geq n_{0}, n_{0}$ large enough and independent of x,

$$
I \sim \log n
$$

Proof.

$$
\begin{aligned}
I & \sim \int_{J_{n} \cap[-4,4]} 1 /|x-t| d t+\int_{4}^{a_{n}} \psi_{n}(t)^{1 / 4} t^{-\alpha-1} d t \\
& \sim \log n+\left\{\begin{array}{cc}
\log n, & \alpha=0 \\
1, & \alpha>0
\end{array}\right. \\
& \sim \log n .
\end{aligned}
$$

Lemma 2.4. Let $x \in\left[2,(3 / 4) a_{n}\right]$. Then

$$
I \sim(1+|x|)^{-\alpha} \log n+(1+|x|)^{-\dot{x}}
$$

Proof. Now for $t \in\left\{|t| \geq(7 / 8) a_{n}\right\} \cap J_{n}$,

$$
1+|t| \sim|t| \quad \text { and } \quad|x-t| \sim|t|
$$

and so

$$
\begin{aligned}
I_{1} & :=\int_{\left\{|t| \geq(7 / 8) a_{n}\right] \cap J_{n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
& \sim \int_{\left[(7 / 8) a_{n},(8 / 9) a_{n}\right]} t^{-\alpha-t} d t \\
& \sim a_{n}^{-\alpha} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
I_{2} & :=\int_{\left\{|t| \leq(7 / 8) a_{n}\right\} \cap J_{n}} \psi_{n}(x)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
& \sim \int_{\left\{t \mid \leq(7 / 8) a_{n}\right\} \cap J_{n}}(1+|t|)^{-\alpha} /|x-t| d t
\end{aligned}
$$

since $\psi_{n}(t) \sim 1$ for this range of t.
Observe that

$$
\left\{|t| \leq(7 / 8) a_{n}\right\} \cap J_{n}=\left\{|t| \leq(7 / 8) a_{n}\right\} \backslash\left[x_{k(x)+3, n}, x_{k(x)-3, n}\right]
$$

Now we split this set into $J^{(t)}$, for $l=1,2,3$, where

$$
t \in J^{(1)} \Rightarrow|t| \leq|x| / 2
$$

and thus

$$
\begin{gathered}
|x-t| \sim|x| \\
t \in J^{(2)} \Rightarrow|t| \geq \frac{8}{7}|x|
\end{gathered}
$$

and thus

$$
|x-t| \sim|t|
$$

and

$$
t \in J^{(3)} \Rightarrow \frac{1}{2}|x|<|t|<\frac{8}{7}|x|,
$$

and thus

$$
|t| \sim|x|
$$

First,

$$
\begin{aligned}
I_{21} & :=\int_{J^{(1)}}(1+|t|)^{-\alpha} /|x-t| d t \\
& \sim \frac{1}{|x|} \int_{J^{(1)}}(1+|t|)^{-\alpha} d t \\
& \sim \frac{1}{|x|} \int_{0}^{|x| / 2}(1+t)^{-\alpha} d t \\
& \sim|x|^{-\hat{\alpha}} \log ^{*}|x| .
\end{aligned}
$$

(Recall the definitions (1.6) and (1.8) of $\hat{\alpha}$ and $\log ^{*} n$.)

$$
\begin{aligned}
I_{22} & :=\int_{J^{(2)}}(1+|t|)^{-\alpha} /|x-t| d t \sim \int_{J^{(2)}} t^{-\alpha-1} d t \\
& \sim \int_{(8 / 7)|x|}^{a_{n}} t^{-\alpha-1} d t \sim \begin{cases}x^{-\alpha}, & \alpha>0 \\
\log \left(a_{n} / 2 x\right), & \alpha=0\end{cases} \\
& \leq C_{3} \begin{cases}(1+|x|)^{-\alpha}, & \alpha>0 \\
\log n, & \alpha=0\end{cases} \\
& \leq C_{4}(1+|x|)^{-\alpha} \log n .
\end{aligned}
$$

Next

$$
\begin{aligned}
& I_{23}:=\int_{y_{13}(3)}(1+|t|)^{-\alpha t} /|x-t| d t \\
& \sim|x|^{\sim x} \int_{J^{(x)}} 1 /|x-t| d t \\
& \sim|x|^{-\alpha} \int_{\left.\left.[x / 2.2 x] \backslash \backslash x_{k(1, \ldots, n}, x_{k t u}\right), \ldots\right]} 1 /|x-t| d t \\
& \sim|x|^{-\infty} \int_{[1 / 2,2] \backslash\left[x_{(1)+3, n / x, x_{(1)}, 3, n / x \mid} 1 /|1-s| d s\right.} \\
& \sim|x|^{-\alpha x}\left\{\log \left(\frac{x / 2}{x-x_{k(x)+3, n}}\right)+\log \left(\frac{x}{x_{k(x)-3, n}-x}\right)\right\} \\
& \sim|x|^{* "} \log n
\end{aligned}
$$

as

$$
\left|1-\frac{x_{h(x)}+3 \cdot n}{x}\right|=\left|\frac{x-x_{h(x)+3, n}}{x}\right|\left\{\begin{array}{l}
\leq C_{4} a_{n} / n \\
\geq C_{5} / n
\end{array}\right.
$$

since $x_{k(x)-3 . n}-x_{k(x)+3, n} \sim a_{n} / n$, for $x \in\left[2,(3 / 4) a_{n}\right]$.
So

$$
\begin{aligned}
I= & I_{1}+I_{2} \\
& \sim a_{n}^{-a}+I_{21}+I_{22}+I_{23} \\
& \sim a_{n}^{-\alpha}+(1+|x|)^{-\dot{\alpha}} \log ^{*}|x|+O\left((1+|x|)^{-\alpha} \log n\right) \\
& +(1+|x|)^{-\alpha} \log n \\
& \sim \begin{cases}(1+|x|)^{-\dot{\alpha}}+(1+|x|)^{-\alpha} \log n, & \alpha \neq 1 \\
(1+|x|)^{-\alpha} \log n, & \alpha=1\end{cases} \\
& \sim(1+|x|)^{" \pi} \log n+(1+|x|)^{-\dot{x}} .
\end{aligned}
$$

Now Lemmas 2.3 and 2.4 and Eqs. (2.15) and (2.16) yield;
Lemma 2.5. For $x \in\left[0,(3 / 4) a_{n}\right]$,

$$
\hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \log n+(1+|x|)^{-\hat{\alpha}}\right\}
$$

Lemma 2.6. Let $x \in\left[(3 / 4) a_{n}, a_{n}\left(1-L n^{-2 / 3}\right)\right]$, where $L>0$ is so large that $x_{3 n} \geq a_{n}\left(1-L n^{-2 / 3}\right)$. Then

$$
I \sim a_{n}^{-\dot{\alpha}} \log ^{*} n+a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right] .
$$

Proof. In this case we have

$$
1-\left(x / a_{n}\right) \leq 1 / 4 \quad \text { and } \quad 1-\left(x / a_{n}\right) \geq L n^{-2 / 3} .
$$

Here

$$
\begin{aligned}
I_{3} & :=\int_{\left(-x, a_{n} / 2\right) \cap J_{n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
& \sim a_{n}^{-1} \int_{\left(-x, a_{n} / 2\right) \cap I_{n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} d t
\end{aligned}
$$

since $|x-t| \sim a_{n}$.
Thus

$$
\begin{aligned}
& I_{3} \sim\left[a^{-1} \int_{\left[x_{n+1}, \ldots,-a_{n} / 2\right] \backslash\left(x_{4(1)+3, n}, x_{k(x)-3, n}\right]_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} d t}+a^{-1} \int_{\left[-a_{n} / 2, a_{n, 2}\right]}(1+|t|)^{-\alpha} d t\right] \\
& :=I_{31}+I_{32} .
\end{aligned}
$$

Now

$$
I_{31} \leq C_{6} a_{n}^{-\dot{\alpha}} \log ^{*} n \quad \text { and } \quad I_{32} \sim a_{n}^{-\hat{\alpha}} \log ^{*} n .
$$

Therefore

$$
I_{3} \sim a_{n}^{-\dot{\alpha}} \log ^{*} n
$$

Next we deal with

$$
\begin{align*}
& I_{4}:=\int_{\left[a_{n} / 2, x\right) \cap J_{n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha /} /|x-t| d t \\
& \sim a_{n}^{-\alpha} \int_{\left[a_{n} / 2, x_{0, n} \backslash \backslash x_{k(1), 3, \ldots}, x_{k(1)-3, n}\right]} \psi_{n}(t)^{1 / 4} /|x-t| d t \\
& =a_{n}^{-\alpha} \int_{\left[a_{n} / 2, x_{1, n} \backslash \backslash x_{k(x), 3_{n}, x_{A(1)}, 3, n}\right]}\left(\max \left\{n^{-2 / 3}, 1-\left(|t| / a_{n}\right)\right\}\right)^{1 / 4} \\
& /|x-t| d t \\
& =a_{n}^{-\alpha} \int_{\left[1 / 2, x_{[n n} / a_{n}\right] \backslash\left[x_{\text {A(x) }+3 . n} / a_{n}, x_{k(1)-3, n} / a_{n}\right]}\left(\max \left\{n^{-2 / 3}, 1-s\right\}\right)^{1 / 4} \\
& /\left|\left(x / a_{n}\right)-s\right| d s \\
& =a_{n}^{-\alpha} \int_{K_{n}}\left(\max \left\{n^{-2 / 3},\left(1-\left(x / a_{n}\right)\right) v\right\}\right)^{1 / 4} /|v-1| d v, \tag{2.17}
\end{align*}
$$

where we have used the substitution $1-s=\left(1-x / a_{n}\right) u$ and

$$
\begin{aligned}
K_{n}:= & {\left[\frac{1-\left(x_{0 n} / a_{n}\right)}{1-\left(x / a_{n}\right)}, \frac{1}{2\left(1-\left(x / a_{n}\right)\right)}\right] } \\
& {\left[\frac{1-\left(x_{k(x)+3, n} / a_{n}\right)}{1-\left(x / a_{n}\right)}, \frac{1-\left(x_{k(x)-3, n} / a_{n}\right)}{1-\left(x / a_{n}\right)}\right] . }
\end{aligned}
$$

Now

$$
\left|\frac{1-\left(x_{0 n} / a_{n}\right)}{1-\left(x / a_{n}\right)}\right|=O\left(\frac{n^{-2 / 3}}{1-\left(x / a_{n}\right)}\right)=O(1 / L)<1 / 2
$$

for L sufficiently large.
Then we can continue (2.17) as

$$
\begin{aligned}
& \sim a_{n}^{-\alpha} \int_{K_{n} \cap(-\infty, 1 / 2]}\left(\max \left\{n^{-2 / 3},\left(1-\left(x / a_{n}\right)\right) v\right\}\right)^{1 / 4} /|v-1| d v \\
& \quad+a_{n}^{-\alpha} \int_{K_{n} \cap[1 / 2,3 / 2]}\left(\max \left\{n^{-2 / 3},\left(1-\left(x / a_{n}\right)\right) v^{\prime}\right\}\right)^{1 / 4} /|v-1| d v \\
& \quad+a_{n}^{-\alpha} \int_{K_{n} \cap[3 / 2, \infty)}\left(\max \left\{n^{-2 / 3},\left(1-\left(x / a_{n}\right)\right) v\right\}\right)^{1 / 4}|v-1| d v \\
& = \\
& I_{41}+I_{42}+I_{43} .
\end{aligned}
$$

Note that $\left(x / a_{n}\right) \geq 3 / 4$ and so $1 / 2\left(1-\left(x / a_{n}\right)\right) \geq 2$. Now consider I_{41}. Now $v \in K_{n} \cap(-\infty, 1 / 2] \Rightarrow|v-1| \sim 1$. So

$$
\begin{aligned}
I_{41} \sim & a_{n}^{-\alpha} \int_{K_{n} \cap(-\infty, 1 / 2]}\left(\max \left\{n^{-2 / 3},\left(1-\left(x / a_{n}\right)\right) c\right\}\right)^{1 / 4} d v \\
\sim & a_{n}^{-\alpha}\left[\int_{0}^{\left|1-\left(x_{0 n} / a_{n}\right)\right| /\left(1-\left(x / a_{n}\right)\right)} n^{-1 / 6} d v\right. \\
& \left.+\int_{\left|1-\left(x_{\mathrm{Un}} / a_{n}\right)\right| /\left(1-\left(x / a_{n}\right)\right)}^{1 / 2}\left[\left(1-\left(x / a_{n}\right)\right) u\right]^{1 / 4} d v\right] \\
\sim & a_{n}^{-\alpha} n^{-1 / 6}\left|\frac{1-\left(x_{0 n} / a_{n}\right)}{1-\left(x / a_{n}\right)}\right|+C_{7} a_{n}^{-\alpha}\left(1-\left(x / a_{n}\right)\right)^{1 / 4} .
\end{aligned}
$$

But now

$$
a_{n}^{-\alpha} n^{-1 / 6}\left|\frac{1-\left(x_{0 n} / a_{n}\right)}{1-\left(x / a_{n}\right)}\right| \leq C_{8} a_{n}^{-\alpha}\left(1-\left(x / a_{n}\right)\right)^{1 / 4}
$$

Thus

$$
I_{41} \sim a_{n}^{-\alpha}\left(1-\left(x / a_{n}\right)\right)^{1 / 4}
$$

I_{42}. We have $\left(1-\left(x / a_{n}\right)\right)_{e} \sim 1-\left(x / a_{n}\right)$, and so

$$
I_{42} \sim a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \int_{K_{n} \cap[1 / 2,3 / 4]} 1 /|v-1| d v
$$

$$
=a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4}\left[\int_{\left[1 / 2, \frac{1-\left(x_{k(x)+3 . n} / a_{n}\right)}{1-\left(x / a_{n}\right)}\right.}\right]
$$

$$
\left.+\int_{\left[\frac{1-\left(x_{k(x)-3, n} / a_{n}\right)}{1-\left(x / a_{n}\right)}, 3 / 2\right]}\right] 1 /|v-1| d v
$$

$$
=a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4}\left[\log \left[\frac{1-\left(x / a_{n}\right)}{2\left(x_{k(x)-3, n}-x\right) / a_{n}}\right]\right.
$$

$$
\left.+\log \left[\frac{1-\left(x / a_{n}\right)}{2\left(x-x_{k(x)+3, n}\right) / a_{n}}\right]\right]
$$

Observe that

$$
\begin{aligned}
\left|\frac{1-x_{k+3, n}}{1-\left(x / a_{n}\right)}-1\right| & =\left|\frac{\left(x-x_{k \pm 3, n}\right) / a_{n}}{1-\left(x / a_{n}\right)}\right| \sim \frac{\left(x_{k+1, n}-x_{k+3, n}\right) / a_{n}}{1-\left(x / a_{n}\right)} \\
& \sim \frac{\psi_{n}(x)^{-1 / 2}}{n\left(1-\left(x / a_{n}\right)\right)} \sim \frac{\left(1-\left(x / a_{n}\right)\right)^{-3 / 2}}{n}
\end{aligned}
$$

as $\left[1-\left(x / a_{n}\right)\right] \geq L n^{-2 / 3}$ for $x \in\left(x_{k+1, n}, x_{k-1, n}\right)$ and

$$
\left[1-\left(x_{k \pm 2, n} / a_{n}\right)\right] \sim\left[1-\left(x / a_{n}\right)\right] .
$$

It follows that

$$
\begin{aligned}
I_{42} & \sim a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left\{n\left[1-\left(x / a_{n}\right)\right]^{3 / 2}\right\} \\
& \sim a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]
\end{aligned}
$$

Now $n^{2 / 3} \psi_{n}(x) \geq L$. Thus $I_{42}>I_{41}$ and so

$$
I_{41}+I_{42} \sim a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]
$$

Furthermore,

$$
\begin{aligned}
I_{43} & =a_{n}^{-\alpha} \int_{K_{n} \cap[3 / 2, \infty)}\left[1-\left(x / a_{n}\right)\right]^{1 / 4} v^{1 / 4} /|v-1| d v \\
& =a_{n}^{-\alpha}\left[1-\left(x / a_{n}\right)\right]^{1 / 4} \int_{K_{n} \cap[3 / 2, x)} v^{-3 / 4} d v
\end{aligned}
$$

as $u \in K_{n} \cap[3 / 2, \infty) \Rightarrow v-1 \sim v^{\prime}$. Hence

$$
\begin{aligned}
I_{4,3} & \sim a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} v^{1 / 4} \left\lvert\, \begin{array}{l}
\frac{1}{2\left[1-\left(x / a_{n}\right)\right]} \\
3 / 4
\end{array}\right. \\
& \sim a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4}\left[\psi_{n}(x)^{-1 / 4}-(3 / 4)^{1 / 4}\right] \\
& \sim a_{n}^{-\alpha},
\end{aligned}
$$

since $\psi_{n}(x)^{-1 / 4}-1 \sim \psi_{n}(x)^{-1 / 4}$. Thus

$$
\begin{aligned}
I_{4} & =I_{41}+I_{42}+I_{43} \\
& \sim a_{n}^{-\alpha}\left\{\left[1-\left(x / a_{n}\right)\right]^{1 / 4}+\psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]+1\right\} \\
& \sim a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I & =I_{3}+I_{4} \\
& \sim a_{n}^{-\hat{\alpha}} \log ^{*} n+a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]
\end{aligned}
$$

Now from Lemma 2.6 and Eqs. (2.15) and (2.16) we obtain
Lemma 2.7. For $x \in\left[(3 / 4) a_{n}, a_{n}\left(1-L n^{-2 / 3}\right)\right], L>0$, large enough,
$\hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{a^{-\dot{\alpha}} \log ^{*} n+a_{n}^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right\}$.
Remark. Observe that for $|x| \leq(3 / 4) a_{n}, \psi_{n}(x) \sim 1$ and $n^{2 / 3} \psi_{n}(x) \sim$ $n^{2 / 3}$. So

$$
\log \left[2 n^{2 / 3} \psi_{n}(x)\right] \sim \log n
$$

Thus for $|x| \leq(3 / 4) a_{n}$, we can recast Lemma 2.5 as

$$
\begin{aligned}
& \hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
&\left.+(1+|x|)^{\hat{\alpha}} \log ^{*} n\right\}
\end{aligned}
$$

Thus we have
Lemma 2.8. Let $|x| \leq a_{n}\left(1-L n^{-2 / 3}\right)$. Then

$$
\begin{array}{r}
\hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n_{1}} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
\left.+(1+|x|)^{-\hat{\alpha}} \log ^{*} n\right\}
\end{array}
$$

Lemma 2.9. Let $\left|1-\left(x / a_{n}\right)\right| \leq L n^{-2 / 3}, L>0$ large enough. Then

$$
\begin{aligned}
& \hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
&\left.+(1+|x|)^{-\hat{\alpha}} \log ^{*} n\right\}
\end{aligned}
$$

Proof. Here we write

$$
\begin{aligned}
I \sim & \int_{J_{n} \cap\left[-a_{n} / 2, a_{n} / 2\right]} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
& +\int_{J_{n} \cap\left[a_{n} / 2,2 a_{n}\right]} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
= & I_{5}+I_{6}
\end{aligned}
$$

since all the zeros of $p_{n}(x)$ are inside $\left[-2 a_{n}, 2 a_{n}\right]$.

Now for $t \in J_{n} \cap\left[-a_{n} / 2, a_{n} / 2\right], \psi_{n}(t) \sim 1$ and $|x-t| \sim a_{n}$. So

$$
\begin{aligned}
I_{5} & \sim a_{n}^{-1} \int_{J_{n} \cap\left[-a_{n} / 2, a_{n} / 2\right]}(1+|t|)^{-\alpha} d t \\
& \sim a_{n}^{-\hat{\alpha}} \log { }^{*} n .
\end{aligned}
$$

Next consider I_{6}. For this range we have $t \sim a_{n}$. Thus

$$
\begin{aligned}
I_{6} \sim & a_{n}^{-\alpha} \int_{J_{n} \cap\left[a_{n} / 2,2 a_{n}\right]} \psi_{n}(t)^{1 / 4} /|x-t| d t \\
= & a_{n}^{-\alpha} \int_{J_{n} \cap\left[a_{n} / 2,2 a_{n}\right] \cap\left\{t:\left|\left(t / a_{n}\right)-1\right| \leq 2 L n-2 / 3\right)} \psi_{n}(t)^{1 / 4} /|x-t| d t \\
& +a_{n}^{-\alpha} \int_{J_{n} \cap\left[a_{n} / 2,2 a_{n}\right] \cap\left\{t:\left|\left(t / a_{n}\right)-1\right| \geq 2 \ln -2 / 3\right\}} \psi_{n}(t)^{1 / 4} /|x-t| d t \\
= & I_{61}+I_{62} .
\end{aligned}
$$

Here for large enough n

$$
\begin{aligned}
I_{61} & \sim a_{n}^{-\alpha} n^{-1 / 6} \int_{J_{n} \cap\left\{t:\left|\left(1 / a_{n}\right)-1\right| \leq 2 L n^{-2 / 3}\right\}} 1 /|x-t| d t \\
& =a_{n}^{-\alpha} n^{-1 / 6} \int_{J_{n} / a_{n} \cap\left\{s:|s-1| \leq 2 L n^{-2 / 3}\right\}} 1 /\left|\left(x / a_{n}\right)-s\right| d s \\
& \leq C_{9} a_{n}^{-\alpha} n^{-1 / 6} \log n \leq C_{9} a_{n}^{-\alpha} \log n .
\end{aligned}
$$

Next

$$
\begin{aligned}
& \left|\left(t / a_{n}\right)-1\right| \geq 2 L n^{-2 / 3} \\
& \quad \Rightarrow|x-t|=a_{n}\left|\left[1-\left(t / a_{n}\right)\right]-\left[1-\left(x / a_{n}\right)\right]\right| \geq a_{n}\left|1-\left(t / a_{n}\right)\right| / 2
\end{aligned}
$$

as $\left|1-\left(x / a_{n}\right)\right| \leq L n^{-2 / 3} \leq(1 / 2)\left|1-\left(t / a_{n}\right)\right|$. Hence

$$
\begin{aligned}
I_{62} & \leq C_{10} a^{-\alpha \cdot 1} \int_{J_{n} \cap\left[a_{n} / 2,2 a_{n} \backslash \backslash t:\left|\left(t / a_{n}\right)-1\right| \geq 2 L_{n}^{-2 / 3}\right\}}\left(\max \left\{n^{-2 / 3}, 1-\left(t / a_{n}\right)\right)\right)^{1 / 4} / \\
& \leq C_{11} a_{n}^{-\alpha-1} \int_{J_{n}}\left|1-\left(t / a_{n}\right)\right|^{-3 / 4} d t \\
& =C_{11} a_{n}^{-\alpha} \int_{J_{n} / a_{n}}|1-s|^{-3 / 4} d s \\
& \sim a_{n}^{-\alpha},
\end{aligned}
$$

as $(1-s)^{-3 / 4}$ is integrable. Hence

$$
\begin{aligned}
I & \sim a_{n}^{-\dot{x}} \log ^{*} n+I_{61}+I_{62} \\
& \sim a_{n}^{-\dot{x}} \log ^{*} n,
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) a_{n}^{-\hat{\alpha}} \log ^{*} n \\
& \sim \\
& \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{* \alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
&\left.+(1+|x|)^{-\hat{i}} \log ^{*} n\right\}
\end{aligned}
$$

since $\psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]=O\left(n^{-1 / 6} \log n\right)=o(1)$.
Consequently Lemma 2.8 and Lemma 2.9 yield
Lemma 2.10. For $|x| \leq a_{n}\left(1+L n^{-2 / 3}\right), L>0$, large enough,

$$
\begin{array}{r}
\hat{\Sigma}_{3}(x) \sim \sqrt{ } a_{n}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
\left.+(1+|x|)^{-i x} \log ^{*} n\right\}
\end{array}
$$

Lemma 2.11. Let $x \in\left[a_{n}\left(1+L n^{-2 / 3}\right), 2 a_{n}\right], L>0$ large enough. Then

$$
\begin{aligned}
& \hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
&\left.+(1+|x|)^{-\dot{\varepsilon}} \log ^{*} n\right\} .
\end{aligned}
$$

Proof. If L is large enough, we have $\left|x_{k(1)+3, n}\right| \leq a_{n}\left(1+L n^{-2 / 3}\right)$. Then

$$
\begin{aligned}
I:= & \int_{J_{n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
\sim & \int_{\left[0, x_{01 n}\right]} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
= & \int_{\left[0, a_{n} / 2\right]} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
& \quad+\int_{\left[a_{n} / 2, x_{0, n}\right]} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} /|x-t| d t \\
= & I_{7}+I_{8} .
\end{aligned}
$$

Now

$$
\begin{aligned}
I_{7} & \sim a_{n}^{-1} \int_{0}^{a_{n} / 2}(1+t)^{-\alpha} d t \\
& \sim a_{n}^{-\hat{\alpha}} \log ^{*} n
\end{aligned}
$$

Now if L is large enough, we have for $t \in\left[a_{n} / 2, x_{0 n}\right]$, that

$$
\begin{aligned}
|x-t| & \geq x_{(1 n}\left(1+n^{-2 / 3}\right)-t \\
& \geq x_{0 n} \max \left\{n^{-2 / 3}, 1-\left(t / x_{0 n}\right)\right\} \\
& \geq C_{12} a_{n} \max \left\{n^{-2 / 3}, 1-\left(t / a_{n}\right)\right\} \\
& =C_{12} a_{n} \psi_{n}(t)
\end{aligned}
$$

in view of (1.9) and (2.1). So

$$
\begin{aligned}
I_{8} & \leq C_{1,3} a_{n}^{-\alpha} \int_{\left[a_{n} / 2, x_{1 n}\right]} \psi_{n}(t)^{1 / 4} /|x-t| d t \\
& \leq C_{14} a_{n}^{-\alpha-1} \int_{\left[a_{n} / 2, x_{0 n}\right]} \psi_{n}(t)^{-3 / 4} d t \\
& =C_{14} a_{n}^{-\alpha} \int_{\left[1 / 2, x_{10 n} / a_{n}\right]}\left(\max \left\{n^{-2 / 3}, 1-s\right\}\right)^{-3 / 4} d s \\
& \leq C_{16} a_{n}^{-\alpha} .
\end{aligned}
$$

Thus

$$
I \sim a_{n}^{-\hat{\alpha}} \log ^{*} n
$$

Also in this case,

$$
\psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]=O\left(n^{-1 / 6} \log n\right)=o(1)
$$

Therefore

$$
\begin{aligned}
& \hat{\Sigma}_{3}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
&\left.+(1+|x|)^{-\dot{\alpha}} \log ^{*} n\right\}
\end{aligned}
$$

Lemma 2.12. There exists n_{0} such that uniformly for $n \geq n_{0}$ and $x \in\left[2 a_{n}, \infty\right)$,

$$
\Lambda_{n}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \frac{1}{|x|} a_{n}^{i-\dot{\alpha}} \log ^{*} n
$$

Proof. Recall that all the zeros of $p_{n}(x)$ lie in $\left\{x:|x| \leq a_{n}(1+\right.$ $\left.\left.L n^{-2 / 3}\right)\right\}$, for some fixed large $L>0$. So for n large enough,
$\left|x-x_{k n}\right| \sim|x|, \quad$ uniformly for $1 \leq k \leq n$, and $x \geq 2 a_{n}$.
Then (2.5) gives uniformly for $x \geq 2 a_{n}$,

$$
A_{n}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \frac{1}{|x|} \sum_{k=1}^{n} \psi_{n}\left(x_{k n}\right)^{-1 / 4}\left(1+\left|x_{k n}\right|\right)^{-\alpha} \frac{a_{n}}{n} .
$$

As in our estimate for $\hat{\Sigma}_{3}$, we deduce that

$$
\begin{aligned}
A_{n}(x) & \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \frac{1}{|x|} \int_{x_{n+1, n}}^{x_{0 n}} \psi_{n}(t)^{1 / 4}(1+|t|)^{-\alpha} d t \\
& \sim \sqrt{a_{n}}\left|p_{n} W\right|(x) \frac{1}{|x|} a_{n}^{1-\dot{\alpha}} \log ^{*} n
\end{aligned}
$$

exactly as in Lemma 2.6.

3. Proof of the Result

Proof of Theorem 1.1. (a) For $|x| \leq 2 a_{n}$, (2.10), (2.14), and Lemmas 2.10, 2.11 give

$$
\begin{align*}
A_{n}(x)= & \sum_{1}(x)+\sum_{2}(x)+\sum_{3}(x) \\
\leq & C_{1}(1+|x|)^{-\alpha} \\
& +C_{1} \sqrt{a_{n}}\left|p_{n} W\right|(x) \psi_{n}(x)^{1 / 4}(1+|x|)^{-\alpha} \\
& +C_{1} \sqrt{a_{n}}\left|p_{n} W\right|(x)\left\{(1+|x|)^{-\alpha} \psi_{n}(x)^{1 / 4} \log \left[2 n^{2 / 3} \psi_{n}(x)\right]\right. \\
& \left.+(1+|x|)^{-\grave{\alpha}} \log ^{*} n\right\} \tag{3.1}
\end{align*}
$$

Since $2 n^{2 / 3} \psi_{n}(x) \geq 1$, we see that the middle term of the sum may be omitted, and we obtain (1.10). Since (2.7), (2.8) show that

$$
\begin{equation*}
\sqrt{a_{n}}\left|p_{n} W\right|(x) \psi_{n}(x)^{1 / 4} \leq C_{2} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{a_{n}}\left|p_{n} W\right|(x) \leq C_{2} n^{1 / 6} \tag{3.3}
\end{equation*}
$$

we obtain also (1.11).
(b) For $|x| \leq \sigma a_{n}$ the sums \sum_{1} and \sum_{2} are non-empty because of the spacing (2.2), if δ and M are suitably chosen. Then (2.12), (2.14), and Lemma 2.10 give (3.1) with \leq replaced by \sim. Moreover for this range,

$$
\psi_{n}(x) \sim 1
$$

and we obtain (1.12): We no longer need $\log ^{*} n$ because if $\alpha=1$, the $\log n$ is already present. Using our bounds (3.2) for $p_{n}(x)$ gives (1.13).
(c) This is Lemma 2.12.

Acknowiedgment

This paper forms part of my Ph.D. thesis at Witwatersrand University, Johanneshurg.

References

1. Z. Ditzins anis V. Totik, "Moduli of Smoothness," Springer Series in Computational Mathematics, Vol. 9, Springer, Berlin, 1987.
2. G. Frfted, Lagrangesche Interpolation über die Nullstellen der Hermiteschen Orthogonalpolynome, Studia Sci. Math. Hungar. 4 (1969), 179-190.
3. G. Frfats, "Orthogonal Polynomials," Pergamon Press/Akademiai Kiado. Budapest/ Oxford, 1971.
4. A. Knopfmacher, "Linear Operators and Christoffel Functions Associated with Orthogonal Polynomials," Ph.D. Thesis, University of the Witwatersrand, Johannesburg, 1985.
5. A. L. Levin ani D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.
6. D. S. Libansky and F. Moricz. The weighted L_{n}-norms of orthogonal polynomials for Freud weights, J. Approx. Theory 77 (1994), 42-50).
7. P. Neval, Lagrange interpolation at the zeros of Laguerre polynomials, Mat. Lapok 22 (1971), 149-164. [In Hungarian]
8. P. Neval, Fourier series and interpolation, II, Mat. Lapok 24 (1973), 49-61.
9. J. Szabados and P. Vertesi, "Interpolation of Functions," World Scientific, Singapore, 199).
